Archivo de la categoría: Células madre

Convierten células madre humanas en células pulmonares funcionales

Los hallazgos tienen relevancia para la enfermedad pulmonar, la detección de fármacos, y, en última instancia, para generar tejido pulmonar para trasplantes

FOTOLIA
Muchas patologías pulmonares se beneficiarán de esta adelanto científico

Investigadores del Centro Médico de la Universidad de Columbia (CUMC), en EE.UU., han logrado transformar células madre humanas en células de pulmón y vías respiratorias funcionales. El avance, publicado en Nature Biotechnology, tiene una gran relevancia especialmente para la enfermedad pulmonar, la detección de fármacos, estudiar el desarrollo del pulmón humano y, en última instancia, generar tejido pulmonar para trasplante.

Para el coordinador del estudio, Hans-Willem Snoeck, este «relativo éxito» en la transformación de las células madre humanas en células del corazón, beta del páncreas, intestinales, del hígado y nerviosas, abre todo tipo de posibilidades para la medicina regenerativa. «Ahora, somos por fin capaces de fabricar células pulmonares y de las vías respiratorias», afirma. En su opinión este logro es especialmente «relevante» en este caso debido a que los trasplantes de pulmón tienen un pronóstico particularmente malo.

A pesar de que todavía pasarán algunos muchos años para cualquier aplicación clínica de este logro, el investigador entiende que se puede empezar a pensar en hacer trasplantes pulmonares autólogos, es decir, trasplantes que utilizan las propias células de la piel de un paciente para generar tejido pulmonar funcional.

Alternativa a células madre

La investigación se basa en el descubrimiento del propio Snoeck en 2011 de un conjunto de factores químicos que pueden convertir células embrionarias o células madre pluripotentes inducidas (iPS) humanas en células del endodermo del intestino anterior, precursor de las células del pulmón y las vías respiratorias. Las células iPS humanas se parecen mucho a las células madre embrionarias humanas pero se generan a partir de células de la piel, persuadiéndolas para ralentizar su desarrollo. Las células iPS humanas pueden ser estimuladas para diferenciarse en células especializadas, ofreciendo a los investigadores una alternativa a las células madre embrionarias humanas.

En este trabajo, Snoeck y su equipo encontraron nuevos factores que pueden completar la transformación de las células embrionarias humanas o células iPS en células epiteliales de pulmón funcionales (células que cubren la superficie del pulmón). El equipo vio que las células resultantes expresan marcadores de al menos seis tipos de células epiteliales de pulmón y de las vías respiratorias, en particular los marcadores de las células epiteliales alveolares de tipo 2. Las células de tipo 2 son importantes porque producen surfactante, una sustancia fundamental para mantener los alveolos pulmonares, donde se produce el intercambio gaseoso, y que también participan en la reparación del pulmón después de lesiones y daños.

Los resultados tienen implicaciones para el estudio de diversas enfermedades pulmonares, como la fibrosis pulmonar idiopática, en las que se piensa que las células tipo 2 del epitelio alveolar juegan un papel central. «Nadie sabe qué causa la enfermedad y no hay manera de tratarla. Gracias a esta tecnología los investigadores serán capaces de crear modelos de laboratorio de fibrosis pulmonar idiopática para estudiar la patología a nivel molecular y hallar dianas para posibles tratamientos o curas», resalta Snoeck.

Injerto autólogo

Este experto adelanta que, a largo plazo, se podría utilizar esta tecnología para hacer un injerto autólogo de pulmón. «Esto implicaría tener un pulmón de un donante del que eliminar todas las células del pulmón y dejar sólo su andamio y sembrar el andamio con nuevas células de pulmón derivadas del paciente, pudiendo evitarse así problemas de rechazo», señala Snoeck, que está investigando este enfoque en colaboración con científicos del Departamento de Ingeniería Biomédica de la Universidad de Columbia. «Estoy muy emocionado con esta colaboración con Hans Snoeck para integrar la ciencia de células madre con la bioingeniería en la búsqueda de nuevos tratamientos para la enfermedad de pulmón», dice Gordana Vunjak-Novakovic, coautora del artículo y profesora de la Fundación Mikati de Ingeniería Biomédica en la Escuela de Ingeniería de Columbia.

Convierten células madre humanas en células pulmonares funcionales – ABC.es.

Anuncios

Comentarios desactivados en Convierten células madre humanas en células pulmonares funcionales

Archivado bajo cáncer, Célula, Células madre, iPS

Vía libre para probar en pacientes células madre contra el párkinson

Un experimento japonés con macacos descarta el rechazo inmunológico y se ensayará en humanos en dos años

No se trata aún de aliviar los síntomas

Las células madre iPS dieron el Nobel a Yamanaka. / REUTERS / CORDON PRESS

La gran promesa de la emergente medicina regenerativa es convertir las células madre derivadas de un paciente en tejidos que se le puedan trasplantar para tratar su enfermedad. La idea supera hoy una prueba crucial con la demostración, por científicos japoneses, de que las neuronas dopaminérgicas –cuya destrucción causa el párkinson— derivadas de células madre pueden trasplantarse al cerebro de los primates sin apenas rechazo inmunológico. Esto despeja el camino hasta el punto de que los ensayos clínicos con pacientes humanos de párkinson empezarán en dos años, según el responsable de la investigación.

“Nosotros, y también otros laboratorios en Estados Unidos y Europa, estamos proyectando un ensayo clínico con pacientes de párkinson”, dice a EL PAÍS Jun Takahashi, investigador principal del Centro para la Investigación y Aplicación de las Células iPS, en Kioto. “Calculo que el ensayo empezará en un par de años”. Takahashi es el coordinador del trabajo presentado en Stem Cell Reports. Otro de los firmantes es su jefe en Kioto, Shinya Yamanaka, último premio Nobel de Medicina por el descubrimiento de las células iPS,

En ensayos previos la respuesta inmunitaria arruinaba el trabajo

Las células iPS (induced pluripotent stem cells, o células madre de pluripotencia inducida) son la gran promesa de la investigación biomédica. Son unas células madre tan versátiles como las embrionarias -capaces de convertirse en cualquier tejido y órgano del cuerpo-, pero que se obtienen reprogramando, o retrasando el reloj de simples células de la piel u otro tejido del paciente. No solo eluden el uso de embriones humanos, sino que además son genéticamente idénticas al paciente. Los trasplantes derivados de ellas no deberían, por tanto, generar rechazo inmunológico.

Pero las predicciones más razonables fallan a menudo en biología. En los últimos dos años, algunos experimentos con ratones habían arrojado un jarro de agua helada sobre esas expectativas. Varios tipos de trasplantes derivados de células madre iPS indujeron una fuerte respuesta inmunológica en el ratón receptor, pese a que el trasplante procedía de un ratón genéticamente idéntico a él. Por alguna razón que sigue sin estar del todo clara, las células iPS parecen generar rechazo en esos sufridos roedores de laboratorio.

Takahashi, Yamanaka y sus colegas muestran ahora que, pese a todas esas prevenciones, el proceso funciona en primates no humanos. Han utilizado ocho macacos (Macaca fascicularis) criados para este propósito, les han extraído unas pocas células de la piel o de la sangre y les han retrasado el reloj para convertirlas en células madre iPS. Esta es la receta por la que Yamanaka ganó el Nobel, basada en solo cuatrofactores de transcripción, o genes que regulan a otros genes.

La falta de dopamina causa la enfermedad, y las células creadas lo solucionan

Después han usado un protocolo –a base de factores de diferenciación y otras moléculas con actividad biológica— que, paso a paso, va convirtiendo (o diferenciando, en la jerga) a las células madre iPS primero en precursores de las neuronas, luego en neuronas y por último en neuronas dopaminérgicas, esto es, productoras del neurotransmisor dopamina. La destrucción de este tipo de neuronas en una parte del cerebro (la sustancia negra), y el consiguiente déficit de dopamina en los circuitos cerebrales normalmente alimentados por ellas, es la causa directa del párkinson.

Los científicos japoneses han trasplantado esas neuronas a los mismos ocho macacos de los que habían partido, pero en dos tipos de condiciones: trasplantes autólogos (al mismo mono del que provenían las células iPS) o heterólogos (a otro mono distinto). El trabajo está diseñado cuidadosamente para examinar la cuestión crucial del rechazo. Y el resultado es un fuerte rechazo inmunológico en los trasplantes heterólogos; y uno muy débil en los trasplantes autólogos. Es la mejor noticia que podía esperar el sector –y el Nobel Yamanaka— tras el último año de depresión por los experimentos con ratones.

El experimento no aborda si las neuronas dopaminérgicas trasplantadas a los macacos pueden o no aliviar los síntomas del párkinson: los monos no tenían párkinson y no había por tanto nada que aliviar. Lo que sí es específico del párkinson es el tipo de neuronas producidas y el lugar del cerebro en el que deberían ser trasplantadas si los pacientes fueran humanos. Los autores han utilizado seis inyecciones en el cuerpo estriado izquierdo del cerebro, cada una con 800.000 neuronas.

Los animales del estudio estaban sanos, por lo que no hay evidencia médica

Takahashi considera que sus resultados ofrecen “una lógica para empezar a probar los trasplantes autólogos en situaciones clínicas, al menos con células neuronales”. También piensa que el trasplante de neuronas derivadas de células iPS al mismo paciente del que fueron obtenidas, o incluso a otro paciente que case con él inmunológicamente –como se hace ahora con los trasplantes de médula— puede ser posible sin necesidad de utilizar fármacos inmunosupresores. La respuesta inmunológica no es nula, pero sí lo bastante baja para que las células trasplantadas sobrevivan a largo plazo.

Los científicos esperan que las células madre sirvan también algún día para tratar la diabetes, la artritis, las dolencias cardiacas, las lesiones medulares y muchas otras enfermedades hoy incurables. El párkinson, sin embargo, parece ir en cabeza por el momento.

Un “mensaje importante”

JAIME PRATS, VALENCIA

“El mensaje que lanza el trabajo es muy importante”, reflexiona María Abad, del Centro Nacional de Investigaciones Oncológicas (CNIO). Abad recuerda experimentos de hace un par de años en los que se trasplantaron células madre iPS (como las embrionarias) en ratones. Entonces, la respuesta inmunológica fue “muy fuerte”. “En un organismo adulto no hay células embrionarias, las rechaza porque no las reconoce como propias”.

Sin embargo, cuando las iPS se diferencian en células de la piel, de médula ósea, hepáticas, endoteliales [las que recubren los vasos sanguíneos] o neuronales antes de ser trasferidas al ratón “la respuesta inmune es muy inferior”.

El ensayo en primates del grupo de Kioto confirma los bajos índices de rechazo también en modelos superiores y supone una prueba de concepto que ya apuntaron investigadores estadounidenses en marzo, apunta Abad. “Pero este artículo es aún más completo porque se ha comprobado cómo responde el cuerpo en un trasplante autólogo [a partir de neuronas obtenidas de iPS del propio receptor] comparado con el heterólogo [neuronas de iPS ajenas]; y muestra cómo la respuesta es mucho mejor en el primer caso”.

“Es un trabajo relevante y necesario de cara a los ensayos clínicos en humanos”, añade Abad, primera autora del estudio que hace dos semanas demostró, en ratones, que es posible convertir células adultas en células madre iPS en el propio organismo.

Vía libre para probar en pacientes células madre contra el párkinson | Sociedad | EL PAÍS.

Comentarios desactivados en Vía libre para probar en pacientes células madre contra el párkinson

Archivado bajo Células madre, iPS, Parkinson

Una fuente inagotable de células madre para la medicina

Hallada una técnica de enorme eficacia para la futura investigación biomédica

Científicos de Israel plantean una alternativa al polémico uso de embriones

_______________________________________________________

Científicos de Israel han descubierto una fuente inagotable de células madre para la medicina. Y la han encontrado en los tejidos de los propios pacientes. Una de las grandes trabas para la aplicación clínica de las células madre iPS, las estrellas emergentes de la medicina regenerativa, es la ineficacia de su obtención a partir de células de la piel: solo una minúscula fracción de éstas, menos del 1%, logra retrasar su reloj para recuperar su primitiva condición de células madre, y por tanto su capacidad para regenerar cualquier tejido y órgano del cuerpo. El nuevo trabajo identifica una forma de superar esa barrera y llevar la eficacia hasta casi el 100%.

La tecnología de las células madre iPS, o de pluripotencia inducida, se ha desarrollado en los últimos años como una salida a los conflictos éticos, políticos y religiosos que suscitaron en la década anterior las células madre embrionarias. Mientras que estas últimas requieren la destrucción de embriones humanos de dos semanas, las células iPS proceden de la reprogramación de simples células de la piel de un paciente. Esto no solo evita el uso de embriones, sino que produce un material genéticamente idéntico al paciente en cuestión, lo que evitará el rechazo en caso de serle trasplantado.

Hasta ahora menos del 1% lograba ‘retrasar el reloj’ para generar tejidos

Jacob Hanna y sus colegas del Instituto Weizmann en Rehovot, Israel, han logrado ahora identificar lo que parece ser el principal impedimento para una conversión eficaz de las células adultas en células iPS. Se trata de un gen conservado en los mamíferos, llamado Mbd3. Hanna muestra en la revista Nature que la inactivación de ese gen, unida al procedimiento convencional de retrasar el reloj celular, permite a las células adultas —ya sean de ratón o de humano— convertirse en células iPS con una eficacia cercana al 100%. No solo funciona con la piel, sino también con otros tipos de tejido, lo que también incrementa las posibles fuentes de material para el futuro.

La técnica de reprogramación ideada por el investigador japonés Shinya Yamanaka —que recibió por ello el último premio Nobel de Medicina— sorprendió a la comunidad científica por su gran simplicidad. Solo requiere tratar las células de la piel con cuatro factores de transcripción, o genes que regulan a otros genes. La otra cara de la moneda es que esas células adultas son muy resistentes a abandonar su naturaleza diferenciada, dedicada a las peculiaridades del oficio de ser piel, y recuperar su primitiva condición pluripotente, capaz de convertirse en cualquier otro tipo celular.

Los fibroblastos, o células que van regenerando la piel, se convierten en células madre iPS con menos de 1% de eficiencia. Esta ineficacia “está obstaculizando la generación de diversos tipos celulares para la investigación y la medicina”, según reconocen en Nature los biólogos del desarrollo Kyle Loh, de la Universidad de Stanford, y Bing Lim, del Instituto del Genoma de Singapur. Este es el obstáculo que pretende despejar el trabajo de los científicos del Instituto Weizmann.

Este material es idéntico al paciente y evita rechazos en caso de trasplantes

Casi todas las células del cuerpo tienen el mismo genoma, una copia del genoma humano que han heredado del cigoto, la célula formada por fusión de un óvulo y un espermatozoide. Que una célula de la piel sea distinta de una del hígado o de una neurona se debe a que cada una tiene activos distintos factores de transcripción, o genes que regulan a otros genes. Esta organización jerárquica de la regulación genética permite a unos pocos factores de transcripción regular grandes redes de genes subordinados, y en el fondo es la razón de que funcione la técnica de Yamanaka: que solo cuatro factores de transcripción, llamados Oct4, Sox2, Klf4 y Myc, basten para reprogramar células de la piel como células madre. Pero ¿por qué la eficacia es tan baja?

Los científicos han hallado ahora que los propios reprogramadores Oct4, Sox2, Klf4 y Myc, los llamados factores de Yamanaka en el mundillo, reclutan a su servicio a un gen represor, llamado Mbd3, que se dedica a reprimir a los mismos genes inmaduros que ellos están intentando activar. Y que basta inactivar a ese represor Mbd3 para que la balanza se desequilibre y la eficacia de la reprogramación ascienda al 100%. En este tipo de trabalenguas viven sumidos los genetistas.

_______________________________________________________

Recelos éticos y religiosos han jalonado el desarrollo de la ciencia con células madre embrionarias.

  • George W. Bush frenó por dos veces (2006 y 2007) con su veto presidencial la investigación con células madre en EE UU. Las resticciones comenzaron en 2001 y no se levantaron hasta la llegada de Barack Obama a la Casa Blanca.
  • Tras una moratoria, la UE acordó en 2006 seguir financiando con fondos comunitarios la investigación en los países donde fuera legal.
  • España no aprobó los primeros proyectos con células embrionarias hasta 2006. La Conferencia Episcopal lo rechazó con la campaña Todos fuimos embriones.

Una fuente inagotable de células madre para la medicina | Sociedad | EL PAÍS.

Comentarios desactivados en Una fuente inagotable de células madre para la medicina

Archivado bajo Bioética, Células madre, Medicina

‘Minicerebros’ creados en el laboratorio

  • Científicos desarrollan estructuras cerebrales a partir de células madre
  • Se trata de ‘minicerebros’ de unos cuatro milímetros que son funcionales
  • Los investigadores afirman que servirán para el estudio de enfermedades

Sección del tejido cerebral generado a partir de células embrionarias. | Madeline Lancaster (Nature)

Investigadores del Instituto de Biotecnología Molecular de Viena, Austria, han conseguido lo que parece ciencia ficcción: cerebros de laboratorio. En realidad, son estructuras de sólo unos cuatro milímetros pero que reproducen la estructura de un cerebro humano. La ‘creación’ ha sido posible a la tecnología con células madre embrionarias y células iPSy, según los expertos, ayudará a analizar cómo se desarrolla este órgano en el útero materno y posiblemente a comprender mejor ciertos problemas neurológicos.

Los resultados, publicados en la revista ‘Nature’, vienen a suponer un paso más en la ingeniería de tejidos que en los últimos meses ha conseguido éxitos importantes como la creación en el laboratorio de órganos tan importantes como el hígado, la vejiga o el riñón.

Lo que han logrado los investigadores austriacos es crear un medio de cultivo que recree las condiciones en las que las células madre embrionarias se encuentran en en el útero materno, donde son capaces de transformarse en células especializadas para formar un cerebro. Con ese gel de cultivo y, tras colocarlas en un bioreactor, las células fueron capaces de organizarse y formar esferas que llegaron a medir a los dos meses entre tres y cuatro milímetros de diámetro, lo que representa un estadio similar al desarrollo cerebral de un embrión de nueve semanas.

“Los ‘organoides’ cerebrales muestran regiones discretas que recuerdan diferentes áreas del cerebro humano en un desarrollo inicial”, explica Madeline Lancaster, primera autora del estudio. Estas regiones incluyen las capas neuronales de la corteza cerebral y el hipocampo, donde reside la capacidad de aprendizaje. Además, las pruebas realizadas en el laboratorio demuestran que estos minicrebros son funcionales.

Estos ‘minicerebros’ han sobrevivido durante casi un año, pero no han crecido más. La razón de que su tamaño no progrese es la falta de aporte sanguíneo, nutrientes y oxígeno, ya que no hay un sistema venoso que los transporte hasta el interior de estas estructuras.

Una de las principales utilidades de estas ‘herramientas’ celulares es su uso como modelo de estudio para analizar problemas como la esquizofrenia o el autismo que, aunque se suelen diagnosticar cuando la persona es joven (o en la niñez en el caso del autismo) su alteración se produce en el desarrollo embrionario.

Además, estos investigadores han dado un paso más para confirmar que los ‘minicerebros’ son funcionales y útiles para la investigación de enfermedades. Este paso lo dieron con la ayuda de neurólogos de la Universidad de Edimburgo (Escocia) y consistió en desarrollar ‘minicerebros’ con una patología. Para ello, utilizaron células iPS, o reprogramadas, procedentes de la piel de personas con microcefalia (un trastorno que genera un cerebro con un tamaño más pequeño de lo normal).

Lo que comprobaron es que estas células se convirtieron en neuronas que se especializaron demasiado pronto, es decir, los cerebros no se desarrollaron lo suficiente antes de esa especialización y su tamaño fue menor del que tenían los otros mini-cerebros, algo lógico ya que se trataban de personas con ese problema.

Zameel Cader, un neurólogo en el Hospital John Radcliffe, en Oxford (Reino Unido) ha declarado que se trata de “una investigación fascinante que amplía las posibilidades de la tecnología con células madre para comprender el desarrollo del cerebro, los mecanismos de las enfermedades y descubrir terapias”.

Algo más excéptico se muestra Dean Burnnett, profesor de Psiquiatría de la Universidad de Cardiff, quien señala que “el cerebro humano es la cosa más compleja que conocemos en el universo, y tiene un número de conexiones e interacciones terriblemente elaboradas, ambas se dan entre sus numerosas subdivisiones y en el cuerpo en general. Decir que puedes replicar el trabajo del cerebro con un tejido en una placa de laboratorio es como inventar el primer abaco y decir que puedes utilizarlo para hacer funcionar la última versión de Windows; hay una conexión, pero hay un gran camino por recorrer hasta que se consigan aplicaciones”.

‘Minicerebros’ creados en el laboratorio | Biociencia | elmundo.es.

Comentarios desactivados en ‘Minicerebros’ creados en el laboratorio

Archivado bajo Células madre, Cerebro, Neurología, Neurona

Una nueva ‘receta’ para fabricar células embrionarias

Células iPS fabricadas a partir de un fibroblasto de la piel

  • Juan Carlos Izpisúa descubre una receta alternativa a la fórmula de Yamanaka
  • Las nuevas iPS serían más seguras y sencillas que las del investigador japonés

 

En 2006, el japonés Shinya Yamanaka revolucionó la biología moderna al descubrir que una célula adulta (de la piel, por ejemplo) podía volver a tener las mismas propiedades que cuando aún estaba en el embrión. Es decir, la posibilidad de volver a ser embrionaria y transformarse en cualquier tejido del organismo. Un equipo de investigadores españoles acaba de demostrar que existe una receta más sencilla y más segura para obtener ese tipo de células, bautizadas como iPS.

Los trabajos del japonés (que le valieron el Nobel en 2012 por su hallazgo) demostraron que era posible añadir en la célula adulta cuatro genes para hacer retroceder su reloj biológico a la etapa embrión. Es decir, disfrutar de todas las ventajas de trabajar con células embrionarias (que son muy plásticas), pero sin los problemas éticos de manipular embriones humanos.

Sin embargo, la fórmula Yamanaka tiene un problema, de los cuatro ingredientes utilizados OCT4, SOX2, KLF4 y c-MYC, el más imprescindible (OCT4) ha resultado ser también el más peligroso, porque está relacionado con la transformación de esas mismas células en malignas. Es decir, a lo largo del proceso pueden producirse fallos que ocasionen cáncer.

Un nuevo trabajo en la revista ‘Cell Stem Cell’, dirigido por el español Juan Carlos Izpisúa, director del Centro de Medicina Regenerativa de Barcelona (CMRB), parece haber hallado una fórmula más sencilla, pero también más segura, de obtener iPS.

Como él mismo explica a ELMUNDO.es, su ‘receta’ no consiste en añadir genes que fomenten la pluripotencialidad de la célula adulta, sino en alterar el equilibrio de sus propios genes. Es decir, para que los restos de pluripotencialidad que aún conserva una célula adulta pasen a mandar más que sus genes de diferenciación.

Los ingredientes tienen nombres complejos, como GATA3 o ZNF521; y de hecho, emplean también alguno de los factores Yamanaka (como KLF4 y cMYC). Pero como explica la primera firmante, Nùria Montserrat, por primera vez se ha demostrado que OCT4 no es imprescindible, como se creía hasta ahora. Quizás lo más importante, añade la investigadora del CMRB, es que ya existen algunos compuestos capaces de modular esas vías, por lo que trabajan ya en la posibilidad de crear células iPS a partir de fármacos que actúen sobre esos mismos genes ahora descubiertos.

El segundo objetivo de Izpisúa y su equipo es tratar de reprogramar las iPS obtenidas hacia cualquier tejido del organismo. De hecho, anuncia sin querer entrar en detalles (“porque aún no está publicado”) trabajan ya en la creación de un órgano complejo fabricado a partir de estas células embrionarias de laboratorio; “porque estas células pluripotenciales han demostrado ser tan plásticas como las generadas por la vía Yamanaka”.

Comentarios desactivados en Una nueva ‘receta’ para fabricar células embrionarias

Archivado bajo Biología Celular, Célula, Células madre, Ciencia, Clonación, Investigación médica

“Páncreas, pulmones o tiroides son candidatos de futuro”

El investigador japonés ha tocado el cielo de la ciencia con 26 años

Takebe estudió Medicina en la Universidad de Columbia.

Takanori Takebe acaba de tocar el cielo de la ciencia con solo 26 años. Junto a su equipo de la Universidad de Yokohama (Japón) ha creado microhígados (unas estructuras hepáticas primigenias, o yemas) de cuatro milímetros. Lo ha logrado manipulando células madre iPS (la gran esperanza de la medicina regenerativa, células normales de la piel reprogramadas para poder convertirse en cualquier linaje celular). Las yemas cumplen dos características clave para el diseño de órganos de laboratorio: están vascularizadas y son tridimensionales. En ratones, estos miniórganos se injertan sin problemas y funcionan (producen proteínas características de este órgano), lo que representa toda una esperanza para la fabricación de órganos para trasplante en el futuro. Nature publicó la investigación el jueves con Takebe como primer firmante del artículo.

A través de correo electrónico, el joven científico responde a las preguntas formuladas por EL PAÍS y relata que todo empezó con un golpe de suerte.

Pregunta. ¿Cómo dio con la clave para desarrollar las yemas de hígado?

Respuesta. Hace dos años, trabajaba en cultivos de hepatocitos derivados de células madre embrionarias, de células endoteliales de la vena del cordón umbilical y de células madre mesenquimales. En una ocasión, uno de ellos creció demasiado, pero en lugar de tirarlo, se me ocurrió juntarlos a ver qué pasaba. No tenía demasiadas esperanzas de que saliera algo de aquello. Y, sin embargo, observé cómo reproducía el proceso de génesis de los órganos. Al manipularlos, daban origen a estructuras tridimensionales que recordaban a la formación del hígado en el embrión. En esa ocasión, no usé hepatocitos obtenidos a partir de células iPS, pero estaba convencido, como así fue, de que también funcionaría si los empleaba. Me costó cientos, si no miles de ensayos, y más de un año dar con las condiciones correctas de cultivo, nutrientes y proporciones entre las células.

P. ¿Por qué el hígado?

R. Debido a mi experiencia personal. Cuando estudiaba medicina en la Universidad de Columbia (EE UU) me especialicé en cirugía de trasplante de hígado. Allí vi que muchos pacientes, entre ellos numerosos niños pequeños, no acceden a las donaciones y mueren durante la espera. Llegué a presenciar incluso casos de turismo de trasplantes [venta de órganos a extranjeros].

P. ¿Su grupo pretende aplicar esta técnica a otros órganos en el futuro?

R. Sí. El páncreas es un candidato prometedor. También los pulmones o la tiroides. Queremos abordar los órganos que [como el hígado] se desarrollan desde el endodermo [una de las tres capas de células que se forman en las primeras fases del desarrollo embrionario, a partir de las cuales se crea el aparato digestivo, el respiratorio y las vísceras].

P. ¿También el corazón?

R. Consideramos que es posible, aunque este órgano tiene un origen celular distinto [el mesodermo, otra de estas tres capas] y tiene un proceso de desarrollo relativamente distinto.

P. Ustedes han desarrollado yemas de hígado de unos cuatro milímetros. ¿Planean hacer tejidos más grandes?

R. Esto requeriría un sistema capilar de riego interno para la llegada de nutrientes y oxígeno, y evitar así que la estructura se necrosara. Estamos buscando colaboradores para desarrollar este tipo de irrigación in vitro de las yemas que hemos creado con vistas a poder aumentar la escala.

P. ¿Cuándo calculan que llegarán los primeros ensayos clínicos para aplicar su investigación en humanos?

R. En unos siete años. El reto más importante al que nos enfrentamos consiste en conseguir una gran cantidad de yemas [Takebe subraya y marca en negrita estas últimas cuatro palabras en la respuesta] para trasplantarlas a los pacientes, ya que el hígado es uno de los órganos más grandes del cuerpo: contiene más de un billón de hepatocitos [las yemas tienen de tres a cuatro millones de células]. Tenemos que producir una cantidad suficiente a coste razonable. Nosotros proponemos una terapia que consiste en trasplantar hígado en gestación (las yemas), distinto al trasplante de órganos maduros o de células. No hay que olvidar que en Estados Unidos mueren 4.000 pacientes a la espera de un hígado: es fácil de imaginar la cantidad de agregados hepáticos que hay que producir para salvarlos. [En España entre el 6% y el 8% de los 1.100 pacientes que necesitan un hígado en estos momentos morirán antes de recibirlo].

P. ¿Les preocupa la seguridad, hay riesgo de que los microhígados desarrollen tumores?

R. Esta es una cuestión muy importante que deberemos evaluar cuidadosamente. De momento hemos hecho un seguimiento de seis meses a los ratones que hemos tratado y no hemos observado la formación de tumores o teratomas. Por ello, somos muy optimistas.

P. ¿Cuáles son las ventajas de las células iPS respecto a las embrionarias?

R. Podemos desarrollar fácilmente células madre pluripotentes a partir de células adultas sin recelos éticos.

P. Primero fue el Premio Nobel de Medicina de 2012 a Shinya Yamanaka por las iPS, luego el anuncio del primer ensayo clínico con estas células dirigido por Masayo Takahashi hace una semana, y ahora su trabajo. ¿Hay alguna razón por la que Japón esté destacando en esta parcela?

R. No creo que seamos más potentes que Estados Unidos o Gran Bretaña.

P. ¿La juventud una virtud a la hora de abordar estrategias novedosas o arriesgadas?

R. No estoy muy seguro, aunque es verdad que se me pueden ocurrir ideas que gente mayor considere extrañas.

P. ¿Ha encontrado la medicina regenerativa finalmente el camino con las iPS tras los contratiempos con las células madre embrionarias?

R. Creo que sí. Cualquiera puede ahora acceder fácilmente y trabajar con células madre pluripotentes gracias a las iPS.

“Páncreas, pulmones o tiroides son candidatos de futuro” | Sociedad | EL PAÍS.

Comentarios desactivados en “Páncreas, pulmones o tiroides son candidatos de futuro”

Archivado bajo Células madre, Entrevistas, Trasplante

Crean un hígado a partir de células de la piel humana | Biociencia

Hígados humanos, en estadio embrionario, en placas de laboratorio. | Takanori Takebe

  • Investigadores japoneses desarrollan un hígado humano a partir de células iPS
  • El órgano, creado en el laboratorio, lo han trasplantado en ratones y es funcional

 

No es la primera vez que se crea un órgano en el laboratorio, ya se había hecho con el corazónla vejiga o el riñón. En muchos casos, estos órganos sólo eran moldes forrados de células. Cuando se ha intentado desarrollar un órgano completo, no se ha tenido éxito porque las células se caen de esos andamiajes y mueren. Ahora sí que se ha generado un hígado funcional a partir de un trozo de piel humana.

Según los autores de este procedimiento, estamos un poco más cerca de fabricar órganos válidos para trasplantes, aunque para esto falta al menos una década.

Desde que en el año 2006 el científico japonés Shinya Yamanaka lograra crear células iPS a partir de células de la piel, han sido muchos los grupos de investigadores que se han volcado en el estudio de estas células que son similares a las embrionarias, es decir, capaces de convertirse en cualquier tejido pero que no proceden de un embrión. Desde la simplificación del método de Yamanaka hasta la derivación en múltiples tejidos como neuronashuesos, o su uso para tratar enfermedades, las células iPS se han convertido en la gran promesa de la Medicina Regenerativa y para la cura de enfermedades para las que no hay solución hoy día. De hecho, su creador recibió el pasado año el premio Nobel de Medicina por su trabajo en este campo.

Ahora unos científicos también japoneses, del departamento de medicina regenerativa de la Ciudad Universitaria de Yokohama y del Hospital Seirei Sakura (Japón), han dado un paso más. “Es la primera vez que un órgano, como el hígado, se ha creado a partir de iPS y se trata de un órgano vascularizado”, explica a ELMUNDO.es Takanori Takebe, el primer firmante del estudio publicado en la revista ‘Nature’.

Para lograr este órgano, Takebe y su equipo pensaron que era buena idea cultivar las células iPS con un cóctel de células formado por células del estroma, células madre mesenquimales de la médula ósea (de un donante) y células del endotelio venoso de cordón umbilical. Tras cultivarlas entre cuatro y seis días, se empezaron a estructurar en un tejido en tres dimensiones y vascularizado.

Suplir un fallo hepático

Posteriormente, el hígado (que tenía una estructura similar a la del hígado de un embrión humano) fue trasplantado al cráneo de un ratón. “Queríamos comprobar si era capaz de generarse un hígado totalmente funcional, por lo que usamos un modelo de ratón con una ventana en el cráneo para el acceso óptico”, explican los autores en su estudio. De esta manera, observaron que el hígado siguió creciendo y desarrollando el riego vascular y sus funciones.

Tras esta prueba, los científicos trasplantaron el órgano en otros dos sitios del cuerpo del ratón, en el mesenterio (membrana del peritoneo) y por encima del riñón. Allí comprobaron que el nuevo órgano era capaz de metabolizar fármacos de forma correcta y mejorar la supervivencia de un ratón al que se le había inducido un fallo hepático.

Los ratones trasplantados fueron seguidos durante seis meses y no mostraron signos del desarrollo de un tumor, uno de los riesgos de la terapia con células madre embrionarias y, que por tanto, también se sospechaba con las iPS. “Somos muy optimistas por este motivo”, señala Takebe.

Para el profesor Matthew Smalley, del Instituto Europeo para la Investitación Oncológica con Células Madre de la Universidad Cardiff (Gales, Reino Unido), es un estudio “muy interesante. Los autores han mostrado que el trasplante hepático no sólo produce proteínas específicas del hígado sino que también desintoxica los compuestos evaluados, que son clave para restaurar la función del hígado en un fallo hepático. La ruta del trasplante todavía necesita optimizarse para los humanos y demostrar en pacientes la seguridad y eficacia, al igual que la viabilidad del injerto a largo plazo. Además, no todos los pacientes son candidatos a este procedimiento. A pesar de todo, el estudio ofrece una promesa real para un método alternativo para conseguir órganos humanos para trasplante”.

Crean un hígado a partir de células de la piel humana | Biociencia | elmundo.es.

Comentarios desactivados en Crean un hígado a partir de células de la piel humana | Biociencia

Archivado bajo Biología Celular, Células madre, Clonación, Investigación médica, Nature, Nature revista, Técnicas y métodos, Tejidos