Archivo de la categoría: Cerebro

Más de 900.000 euros para impulsar el estudio del cerebro

De ellos, la Fundación Tatiana Pérez de Guzmán el Bueno destinará 282.000 euros a becas predoctorales en Neurociencia

De generoso y estimulante calificó la doctora Carmen Cavada el apoyo económico de 943.000 euros a la Neurociencia española por parte de la Fundación Tatiana Pérez de Guzmán el Bueno. Este dinero se repartirá entre becas predoctorales, proyectos de investigación, actividades de divulgación y el patrocinio de la Cátedra UAM-Fundación Tatiana Perez de Neurociencia.

El pasado mes de marzo la Fundación anunció la creación de la Cátedra UAM-Fundación Tatiana Pérez de Guzmán el Bueno de docencia e investigación en Neurociencia. La cátedra, que dirige la doctora Cavada, tiene como objetivo principal la coordinación del Plan de Apoyo a la Neurociencia Española de la Fundación y elfomento de la docencia, la investigación y la difusión de los conocimientos en Neurociencia, especialmente en la comprensióndel sistema nervioso humano y de las enfermedades que lo afectan.

Para la puesta en marcha y seguimiento de su Plan de Apoyo a la Neurociencia Española, la Fundación cuenta con un comité científico formado por investigadores de gran prestigio: Joaquín Fuster, catedrático de Psiquiatría y Ciencias del Comportamiento de la Universidad de California en Los Ángeles; Jesús Flórez, catedrático de Farmacología de la Universidad de Cantabria y presidente de la Fundación Down 21; Luis Miguel García Segura, profesor de Investigación en el Instituto Cajal del Consejo Superior de Investigaciones Científicas (CSIC) y José Serratosa, Jefe del Servicio de Neurología de la Fundación Jiménez Díaz de Madrid.

Previamente, en febrero de este año, la Fundación destinó 525.000 euros, distribuidos en tres años, a proyectos de investigación en Neurociencia. A la convocatoria se han presentado más de 200 solicitudes que están siendo actualmente examinadas por científicos independientes. Además, en la presentación de las ayudas que ha tenido lugar esta mañana, se ha anunciado la convocatoria nacional de becas para realizar tesis doctorales en el ámbito de la Neurociencia, a las que destinarán otros 282.000 euros.

Retos de la Neurociencia

El plan de apoyo a la Neurociencia prevé también la realización dereuniones científicas para favorecer el intercambio de conocimientos entre los neurocientíficos y contribuir a la formación de los jóvenes investigadores. La primera de estas reuniones tendrá lugarel próximo 6 de junio en la Real Academia Nacional de Medicina y en ella se presentará de forma oficial el Plan de Apoyo a la Neurociencia, promovido por la Fundación.

Este primer simposio analizará los “Retos de la Neurociencia en el siglo XXI”, y contará con la presencia de destacados investigadores que hablarán sobre la iniciativa Brain en EEUU (Álvaro Pascual-Leone) y el proyecto Cerebro Humano europeo (Javier de Felipe), el reto que presentan las dos patologías neurodegenerativas más prevalentes (alzhéimer y párkinson) y la discapacidad intelectual.

La Neurociencia tiene gran futuro en este momento y esta ayuda se alinea con las iniciativas Cerebro Humano de Europa y Proyecto Brain de Estados Unidos, para darle un impulso nuevo a esta disciplina”, destaca Carmen Cavada. La catedrática resaltó también que esta iniciativa privada se inscribe en la tradición científica española que representa nuestro Nobel Santiago Ramón y Cajal, considerado el padre de la Neurociencia moderna, y que continúan los neurocientíficos españoles actuales, “muy activos y con gran reconocimiento internacional”.

Más de 900.000 euros para impulsar el estudio del cerebro – ABC.es.

Comentarios desactivados en Más de 900.000 euros para impulsar el estudio del cerebro

Archivado bajo Cerebro, Investigación médica, Neurociencia, Neurología, Neurona

Recrean la actividad del cerebro de un gusano en una imagen en tres dimensiones |MIT

La técnica podría ayudar a los científicos a descubrir cómo las redes neuronales procesan la información sensorial y generan comportamientos


resizer

MASSACHUSETTS INSTITUTE OF TECHNOLOGY (MIT) Han creado un sistema de imagen que revela la actividad neuronal en todo el cerebro de los animales vivos

http://www.abc.es/videos-ciencia/20140519/neuron-activity-3575158976001.html

Se trata de una técnica pionera, la primera primera mediante la cual se pueden generar imágenes en 3-D de los cerebros enteros de los animales en una escala de tiempo de milisegundos, y que podría ayudar a los científicos a descubrir cómo las redes neuronales procesan la información sensorial y generan comportamientos.

Lo han conseguido un grupo de investigadores del Instituto Tecnológico de Massachusetts (MIT) y de la Universidad de Viena, que han creado un sistema de imagen que revela la actividad neuronal en todo el cerebro de los animales vivos.

El equipo utilizó el nuevo sistema de imagen para captar la actividad de cada neurona del gusano «Caenorhabditis elegans», así como la actividad de todo el cerebro de una larva de pez cebra, ofreciendo una imagen más completa de la actividad del sistema nervioso de lo que había sido posible hasta ahora.

según Ed Boyden, uno de los autores del trabajo, so se conoce la actividad de una sola neurona del cerebro «no se puede saber cómo se está computando la información, de este modo, se necesita saber qué están haciendo las neuronas ascendentes para entender lo que significa la actividad de una neurona determinada».

Esto quiere decir, según el científico, que «si usted quiere entender cómo la información se está integrando en las sensaciones y da paso a la acción, hay que ver todo el cerebro».

Con las nuevas posibilidades derivadas de este sistema en 3D el enfoque de esta investigación podría ayudar a los neurocientíficos a aprender más acerca de las bases biológicas de los trastornos cerebrales.

En la actualidad, según Boyden, no se sabe muy bien, en cualquier trastorno cerebral, el «conjunto exacto de las células que participan», por lo que «la capacidad para estudiar la actividad en todo el sistema nervioso puede ayudar a identificar las células o redes que están involucradas con un trastorno del cerebro, dando lugar a nuevas ideas para terapias».

¿Cómo codifican la información las neuronas?

Las neuronas codifican la información -datos sensoriales, planes motores, los estados emocionales y pensamientos- mediante impulsos eléctricos llamados «potenciales de acción», que provocan elderramamiento de iones de calcio en cada celda al dispararse. Dirigiendo proteínas fluorescentes que brillan cuando se unen al calcio, los científicos pueden visualizar este encendido electrónico de las neuronas.

Sin embargo, hasta ahora no ha habido forma de poner imagen a esta actividad neuronal en gran volumen, en tres dimensiones, y en alta velocidad. La exploración del cerebro con un rayo láser puede producir imágenes en 3D de la actividad neuronal, pero se necesita mucho tiempo para capturar una imagen, ya que cada punto debe ser escaneado individualmente.

El equipo del Instituto Tecnológico de Massachusetts quería lograr imágenes en 3D similares pero acelerar el proceso para que pudieran ver la descarga neuronal, que se produce en sólo unos milisegundos. El nuevo método se basa en una tecnología ampliamente utilizada conocida como imágenes de campo claro, que crea imágenes en 3D mediante la medición de los ángulos de los rayos entrantes de la luz.

Los microscopios que realizan imágenes del campo de luz han sido desarrollados anteriormente por varios grupos. En el nuevo estudio, los investigadores del MIT y austriacos optimizaron estos microscopios óptico de campo para lograr, por primera vez, obtener imágenes de actividad neuronal.

Con este tipo de microscopio, la luz emitida por la muestra que se va a examinar se envía a través de un conjunto de lentes que refracta la luz en diferentes direcciones. Cada punto de la muestra generaalrededor de 400 puntos de luz diferentes, que luego se pueden recombinar utilizando un algoritmo de computadora para recrear la estructura 3D.

Recrean la actividad del cerebro de un gusano en una imagen en tres dimensiones – ABC.es.

Comentarios desactivados en Recrean la actividad del cerebro de un gusano en una imagen en tres dimensiones |MIT

Archivado bajo Cerebro, Neurociencia, Neurona

¿Somos nuestro cerebro? | Opinión | EL PAÍS

¿Es lícito entrar en el cerebro de una persona sin su consentimiento?

por:  4 ABR 2014 – 00:00 CET

A mediados de marzo se celebró la Semana Mundial del Cerebro, un acontecimiento que tiene lugar anualmente en más de 80 países y se propone divulgar los progresos y beneficios de la investigación sobre el cerebro, como también los retos a los que se enfrenta. Y en este capítulo de los retos es en el que se introduce en ocasiones un espacio para la reflexión ética.

Curiosamente, la pregunta que suele plantearse a los eticistas es la de cuáles son los límites éticos en la investigación sobre el cerebro y en la aplicación de los hallazgos. Un guion que se repite en todos los acontecimientos científicos, como si la ética fuera una especie de linier sádico, empeñado en descalificar a los científicos cuando la pelota traspasa la línea de lo permitido.

Pero, afortunadamente, las cosas no son así, sino muy diferentes. El primer principio de cualquier ética respetable es el de beneficiar a los seres humanos, a los seres vivos en su conjunto y a la naturaleza, y cuanto más progresen las diversas ciencias en ese sentido, mejor habrán cumplido su tarea. Que, a fin de cuentas, es la de beneficiar. Por eso tiene pleno sentido que trabajen conjuntamente ciencias y humanidades con el fin de conseguir una vida mejor.

Ojalá avancemos en la prevención de enfermedades como la esquizofrenia, el alzhéimer, las demencias seniles, la enfermedad bipolar o la arteriosclerosis; podamos mantener una buena salud neuronal hasta bien entrados los años, mejorar nuestras capacidades cognitivas, precisar más adecuadamente la muerte cerebral, tratar tendencias como las violentas. Ojalá en la educación podamos servirnos de conocimientos sobre el cerebro que permitan a los maestros actuar de forma más acorde al desarrollo de ese órgano, extremadamente plástico; un asunto del que se ocupa con ahínco la neuroeducación.

Ocurre, sin embargo, que cuando las investigaciones y las aplicaciones científicas ponen en peligro la vida, la salud o la dignidad de las personas o el bienestar de los animales se hace necesario recordar que no todo lo técnicamente viable es moralmente aceptable. Que “no dañar” es igualmente un principio inexcusable en todas las actividades humanas, también en las científicas. Para muestra, un botón.

Hace unos días los medios de comunicación informaban de que Miguel Carcaño, el asesino confeso de Marta del Castillo, iba a ser sometido a una prueba neurológica, conocida como “test de la verdad”, a través de la cual podrían leerse sus respuestas cerebrales. Una prueba de este tipo plantea un problema moral y legal, porque no es lícito introducirse en la intimidad de una persona, en este caso a través de su cerebro, sin su consentimiento. Y, en efecto, los medios informaban de que, según la abogada de Carcaño, este había accedido voluntariamente a someterse a la prueba. Esta es una de las muchas cuestiones éticas que se plantean en ámbitos como el de las neurociencias: que no es lícito introducirse en la intimidad de una persona sin su consentimiento expreso. Tampoco ante presuntos terroristas, un aspecto bien importante en la neuroseguridad.

Pero, ¿por qué entrar en el cerebro de una persona es introducirse en la intimidad? ¿Qué tiene de especial ese órgano, que la sola idea de trasplantar un cerebro nos parece inquietante, cuando ya se practican trasplantes tan complicados de otros órganos y otros miembros del cuerpo?

Según un buen número de investigadores, porque todos esos órganos son irrelevantes en comparación con el cerebro. Somos —dicen— nuestro cerebro. Él crea las percepciones, la conciencia, la voluntad, y tanto da que el cerebro se encuentre en un cuerpo como en un ordenador, porque él lo crea todo. Trasplantarlo no presenta más problemas que los técnicos, porque donde va el cerebro de una persona va esa persona. Así las cosas, siguen afirmando estos científicos, actuamos determinados por nuestras neuronas, de modo que no existe la libertad, sino que es una ilusión creada por el cerebro, como todo lo demás.

Sin embargo, tal vez las cosas no sean tan simples y por eso otros investigadores hablan del “mito del cerebro creador”, de que no es el cerebro el que crea nuestro mundo.

Regresando al caso de Carcaño, el médico que supervisó la prueba de la verdad aclaraba que recibe ese nombre porque la persona sometida a ella no puede mentir. Según él, las respuestas cerebrales son automáticas y, por tanto, no están condicionadas ni por la voluntad ni por la conciencia. De donde se sigue para cualquier lector que la voluntad y la conciencia, surjan de donde surjan, son algo distinto de las neuronas y tienen la capacidad de actuar suficiente como para modificar los mensajes automáticos del cerebro. Pueden inventar historias, tratar de ocultar los recuerdos impresos, interpretarlos de una forma u otra desde esa capacidad de fabulación que nos constituye como personas.

Parece, pues, que el enigma de la conducta humana sigue siéndolo, y que es necesario continuar las investigaciones desde el trabajo conjunto de humanistas y científicos, porque conocernos a nosotros mismos es la gran tarea que nos dejó encomendada Sócrates. Es ella misma un gran beneficio.

Adela Cortina es catedrática de Ética y Filosofía Política de la Universidad de Valencia, miembro de la Real Academia de Ciencias Morales y Políticas, y directora de la Fundación ÉTNOR.

¿Somos nuestro cerebro? | Opinión | EL PAÍS.

Comentarios desactivados en ¿Somos nuestro cerebro? | Opinión | EL PAÍS

Archivado bajo Centros Investigación, Cerebro

Primer mapa del cerebro humano en desarrrollo

Permitirá el estudio en detalle de enfermedades como el autismo y valida el uso de modelos animales en investigación

Uno de los retos más importantes de este siglo es el de entender el funcionamiento del cerebro humano, uno de los sistemas más complejos del universo. Un requisito indispensable para tratar un amplio abanico de enfermedades que abarca desde aquellas que se «gestan» en el seno materno, como la esquizofrenia o el autismo, hasta las que se manifiestan en las últimas etapas de la vida, como el párkinson o el alzhéimer.

La revista «Nature» publica esta semana dos trabajos que prometen un importante impulso en el conocimiento del cerebro y sus patologías. Ambos trabajos están ligados al Instituto Allen de Estudios Cerebrales, una entidad privada sin ánimo de lucro puesta en marcha por Paul G. Allen, cofundador de Microsoft, que está empeñado en desentrañar los misterios del cerebro.

Un equipo del Instituto Allen, liderado por Ed Lein ha generado un modelo de alta resolución del patrón de activación de los genes en el cerebro humano durante el desarrollo embrionario, concretamente en las semanas 15, 16 y 21 de gestación. «Conocer cuándo un gen se expresa en el cerebro puede dar pistas importantes acerca de su función», explica Ed Lein, investigador en el Instituto Allen para la Ciencia del Cerebro.

Manual de instrucciones

«Este atlas ofrece una visión completa de qué genes están activos en un momento determinado, en una región concreta y en qué tipos de células, durante el desarrollo embrionario. Esto significa que tenemos un mapa del cerebro humano en desarrollo. Algo crucial para entender cómo se forma el cerebro de manera saludable y una poderosa herramienta para investigar que va mal en la enfermedad», explica Lein.

Lo que han conseguido los investigadores del Allen «es una especie de manual de instrucciones de cómo se va formando el cerebro, limitado a tres estadíos del desarrollo embrionario, aunque con datos de miles de genes», aclara Juan Lerma, director del Instituto de Neurociencias de Alicante CSIC-UMH. Esta es la primera vez que se obtiene un mapa de expresión génica de este tipo en humanos.

En especial, resaltan los autores, el trabajo puede aportar datos muy interesantes en patologías como el autismo, que se empiezan a gestar durante el desarrollo embrionario. «En patologías como el autismo o la esquizofrenia hay alteraciones muy sutiles en la arquitectura cerebral, debido a la expresión de distintos genes», explica Lerma.

Conocer dónde y cuándo se activan los distintos genes que intervienen en el desarrollo del cerebro es importante también a la hora de desarrollar posibles dianas terapuéticas, resalta Mara Dierssen, del Centro de Regulación Genómica de Barcelona y presidenta de laSociedad Española de Neurociencia, que destaca el enorme valor de este trabajo para la comunidad científica.

Tanto Dierssen como Lerma coinciden en resaltar la importancia de que los datos obtenidos se hayan puesto a disposición de todos los investigadores. «El alcance del proyecto y el nivel de detalle de los datos recogidos, ha podido lograrse gracias al enfoque altamente colaborativo e interdisciplinar de distintos proyectos del Instituto Allen. Y ahora los datos están a disposición pública. Toda la comunidad científica puede beneficiarse de nuestro esfuerzo para impulsar sus propias investigaciones en nuevas y emocionantes direcciones», subraya Allan Jones, director ejecutivo del Instituto Allen para el Estudio del Cerebro.

El mapa de expresión génica abre nuevas posibilidades ya que permitirá a los neurocientíficos «estudiar en patologías espontáneas o inducidas en el laboratorio cómo la alteración de determinados genes genera modificaciones en el desarrollo del cerebro».

Modelos animales

El trabajo valida además el controvertido uso de modelos de ratón para el estudio de las patologías humanas, ya que ha puesto de manifiesto que hay más similitudes que diferencias entre el cerebro de roedores y el humano. «Un trozo de corteza cerebral de ratón no se diferencia la del cerebro humano, como ya adelantó Cajal», explica Lerma.

Las diferencias más significativas halladas entre ratones y humanos se encuentra en la corteza prefrontal, «una zona que nos diferencia evolutivamente de otras especies», explica Dierssen, que advierte que «hay que tener en cuenta que la mayor parte del desarrollo de esta zona del cerebro tiene lugar después del nacimiento, y depende de la experiencia». Algo que habrá de tenerse en cuenta, apunta, a la hora de estudiar el desarrollo de las patologías: «a nivel prenaltal ya se producen cambios, pero también hay un componente postnatal tan importante o más que el que se produce durante el desarrollo embrionario». Por lo que cree dificil que pueda atribuirse con certeza una patología al desarrollo prenatal exclusivamente.

Mapa de carreteras

Un segundo trabajo del Instituto Allen ha logrado por primera vez establecer el mapa de las redes neuronales del cerebro compoleto de ratón. Hasta ahora se contaba con mapas parciales de conexiones entre distintas regiones del cerebro, pero este es el primer «conectoma» del cerebro completo de un mamífero. Desde hace un cuarto de siglo se dispone del conectoma del gusano C. elegans, que tiene sólo 302 neuronas. Sin embargo, el cerebro del ratón tiene 75 millones de neuronas, organizadas de forma similar a las del humano.

Ambos trabajos se han dado a conocer un año después de que Obama hiciera pública la iniciativa Brain. En esta segunda etapa se ha doblado el presupuesto inicial, que era de cien millones de dólares, para dotar a los neruocientíficos de herramientas capaces de desentrañar el funcionamiento del cerebro.

El gran reto: de las neuronas a la conducta

Una proteína verde fluorescente ha permitido trazar las conexiones del cerebro, algo así como el “mapa de carreteras”. “Todas estas conexiones estaban determinadas en el ratón e incluso en humanos. Pero lo que no estaba bien determinado era en qué cantidad estaban interconectados las distintas estructuras del cerebro entre sí.” Este estudio ha permitido “saber dónde estas las autopistas, las carreteras nacionales y las secundarias del cerebro”, explica gráficamente Juan Lerma.

Uno de los grandes retos del cerebro de mamíferos es saber cómo se genera la conducta a partir de la actividad de las neuronas. Aunque esto aún no se ha logrado en el gusano C. Elegans, cuyo conectoma ya se conoce, es un requisito previo para dar ese importante paso. Hace unos días, Rafael Yuste, el principal impulsor del Proyecto Brain explicaba a ABC que lo importante para dar este paso, además de tener las conexiones, es ver la actividad conjunta de grupos de neuronas que forman estructuras “emergentes” que dan lugar a funciones concretas, como el pensamiento.

Primer mapa del cerebro humano en desarrrollo – ABC.es.

Comentarios desactivados en Primer mapa del cerebro humano en desarrrollo

Archivado bajo Cerebro, Nature revista, Neurociencia, Neurona

Cerebros más lentos, pero más sabios

Un estudio sugiere que el cerebro de las personas mayores trabaja más despacio, pero no por el declive cognitivo, sino por la ingente cantidad de información que almacena

Como un disco duro con su memoria llena. Así está el cerebro de las personas mayores: repleto de información, de datos y experiencias. Y es precisamente esa cantidad de datos lo que hace que, al igual que un ordenador con su memoria llena, su cerebro vaya más despacio que cuando eran más jóvenes. Es decir, según un curioso estudio que se publica en «Journal of Topics in Cognitive Science», no se trata de un declive mental o deterioro cognitivo asociado a la edad, sino que el hecho de procesar toda la información que contiene su cerebro les hace ir más despacio.

«El cerebro humano funciona más despacio en la vejez -señala Michael Ramscar-, pero sólo porque hemos almacenado más información a través del tiempo». Ramscar, autor del trabajo y profesor de la Universidad de Tübingen, en Alemania, cree que los cerebros de las personas mayores no se debilitan. «Por el contrario , simplemente saben más».

Los investigadores programaron un ordenador para leer una cierta cantidad de información cada día y aprender nuevas palabras y comandos. Cuando el ordenador únicamente «leía» una cantidad limitada de información, su rendimiento en las pruebas cognitivas se parecía al del cerebro de un adulto joven. Pero si el mismo equipo había estado expuesto a las experiencias de toda una vida, su rendimiento se parecía al de un adulto mayor: era más lento, pero no debido a que su capacidad de procesamiento había disminuido, sino a que su «experiencia acumulada» había incrementado su base de datos, lo que le obliga a procesarla y, por ello, tardaba más tiempo.

Más información a procesar

«Imagine ahora a alguien que sabe los cumpleaños de dos personas y puede recuperarlos casi a la perfección. ¿De verdad quiere decir que esa persona tiene mejor memoria que una que conoce los cumpleaños de 2.000 personas, pero ‘solo’ puede recordar correctamente el de nueve de cada diez personas?», señala Ramscar.

El estudio proporciona más de una explicación de por qué, debido a toda la información que nuestros cerebro debe procesar, a medida que envejecen éstos deberían parecer más lentos y olvidadizos que los cerebros más jóvenes.

Y señalan además que algunas pruebas cognitivas que se utilizan para estudiar la capacidad mental pueden favorecer a los cerebros más jóvenes. Por ejemplo, una prueba cognitiva llamada «aprendizaje asociado pareado» invita a la gente a recordar un par de palabras que no estén relacionados, como «corbata» y «galleta». A pesar de que los estudios han demostrado que los jóvenes son mejores en esta prueba, los científicos creen que las personas mayores tienen dificultades para recordar parejas sin sentido -como «corbata» y «galleta»- porque han aprendido que nunca van de la mano.

Cerebros más lentos, pero más sabios – ABC.es.

Comentarios desactivados en Cerebros más lentos, pero más sabios

Archivado bajo Cerebro

En el cerebro de un disléxico

Una investigación demuestra que los afectados por el trastorno tienen menos conectados los módulos lingüísticos de la mente

El hallazgo cambia la forma de entender y abordar la patología

La dislexia es cualquier cosa menos un trastorno raro: se estima que afecta al 10% de la población, o 700 millones de personas en el mundo. Décadas de investigaciones psicológicas han localizado el problema en las representaciones fonéticas del cerebro, que estarían distorsionadas en los disléxicos. Un estudio de imagen cerebral con 22 voluntarios sin este trastorno y 23 disléxicos demuestra ahora que las representaciones fonéticas en el cerebro están completamente intactas, y que la verdadera razón de la dislexia es un déficit en su conexión con las otras 13 áreas cerebrales implicadas en el procesamiento de alto nivel del lenguaje. Las terapias del futuro deberán basarse, proponen los autores, en mejorar esa conectividad.

La dislexia consiste en una dificultad para aprender a leer con fluidez y comprendiendo bien el texto, pese a que los afectados tienen una inteligencia no verbal normal, o a menudo alta. La disfunción no es específica de la lectura, porque el disléxico suele encontrar la misma dificultad para procesar el lenguaje hablado, y para pronunciarlo. Los psicólogos han localizado el problema en el cartógrafo cerebral que se ocupa de clasificar el magma sonoro del mundo real como un mapa de solo unas decenas de fonemas, las unidades básicas de cualquier lenguaje humano.

Las letras del lenguaje escrito son intentos humanos de mapear los fonemas como símbolos, más o menos acertados en según qué lengua. Pero mientras que la facultad del habla está en los genes —es uno de los grandes patrimonios genéticos comunes a toda la humanidad—, la escritura es una invención con solo unos milenios de historia.

Los fonemas están en los genes, y las letras están en la cultura. Pero la dificultad de leer del disléxico no tiene que ver con la visión de las letras, sino con los fonemas que las letras significan. De ahí que una dificultad de lectura tenga un fuerte componente genético. La dislexia tiende a agruparse en familias, y es el triple de común en hombres que en mujeres.

La dislexia afecta al 10% de la población, unos 700 millones de personas

El neurocientífico Bart Boets y sus colegas de la Universidad Católica de Lovaina, el University College de Londres, la Universidad de Oxford y el ETH de Zúrich han utilizado las técnicas más avanzadas para examinar el cerebro en acción de una muestra notable (45 personas) de voluntarios disléxicos y normales (entiéndase normales en el sentido de que representan al 90% de la población mundial). Ello incluye la resonancia magnética funcional, que cartografía (o ilumina) las zonas del cerebro activas mientras el paciente hace tareas de lectura y demás, y las modernas técnicas de computación que permiten detectar la conectividad entre unas zonas y otras: tanto las conexiones estructurales, o estables, como las funcionales que dependen de la tarea. Presentan sus resultados en Science.

Estas técnicas de alta resolución biológica les han permitido ver lo que pasa en las partes relevantes del cerebro mientras los disléxicos y los controles procesan el lenguaje. Como casi toda facultad mental, la representación de los fonemas ocupa un lugar concreto e identificable en el córtex cerebral: por una vez donde cabría esperar, cerca de las orejas, y llamado córtex auditivo primario y secundario. La actividad cerebral allí se ha revelado tan robusta y precisa en los disléxicos como en los controles. Hasta aquí la resonancia magnética funcional.

Pero los mapas de conectividad han revelado una diferencia consistente entre los dos grupos de voluntarios. Los mapas de fonemas (el córtex auditivo primario y secundario) se conectan normalmente con fuerza a las áreas lingüísticas de alto nivel, situadas en otra estructura distinta, el giro frontal inferior, cerca de la sien. Aquí se cuecen los análisis sintácticos y las asignaciones semánticas que se estudian en la escuela, y que son las que dan sentido al lenguaje. Es la conexión del córtex auditivo con estos procesadores de alto nivel la que está debilitada en las personas disléxicas.

No todos los neurocientíficos están convencidos, sin embargo, de que la dislexia sea por completo independiente de la representación fonética, o habilidad para distinguir claramente un fonema de otro. El neurólogo Michael Merzenich, de la Universidad de California en San Francisco, señala en la revista Science que “décadas de trabajo muy extenso y convincente” han mostrado que las personas con dislexia distinguen las representaciones fonéticas con menos fidelidad de lo normal. Merzenich y otros científicos no relacionados con el estudio consideran que las distinciones fonéticas utilizadas en la investigación de Lovaina no son lo bastante finas.

Pero otros expertos sí parecen más impresionados por el nuevo trabajo, como el científico cognitivo Franck Ramus, de la École Normale Supérieure de París: “Es el estudio más concluyente que he visto en el campo en los últimos cinco años; los resultados, de ser ciertos, modifican nuestro entendimiento de la dislexia de manera notable”. Ramus ve implicaciones para los programas de entrenamiento auditivo que se usan actualmente contra la dislexia.

Algunos científicos cuestionan las conclusiones del trabajo

“En las sociedades alfabetizadas actuales”, dice Boets, el primer autor del estudio, “las dificultades para leer y escribir no solo afectan a la educación y el desarrollo cognitivo, sino que también tienen un gran impacto en el bienestar socio-emocional, las oportunidades de trabajo y otros aspectos”.

El neurocientífico de Lovaina explica que, en la mayoría de las lenguas, el sistema de escritura es alfabético, o una correspondencia entre las unidades básicas del habla (los fonemas) y los símbolos visuales (letras o grafemas). La mayoría de los niños pueden así aprender a leer y escribir estudiando las reglas de correspondencia entre fonemas y grafemas. “Pero este proceso requiere cierto entendimiento de la estructura sonora, o fonológica, del lenguaje, y aquí es donde reside la dificultad de los disléxicos”, concluye Boets.

En el cerebro de un disléxico | Sociedad | EL PAÍS.

Comentarios desactivados en En el cerebro de un disléxico

Archivado bajo Cerebro, Science

Europa se da diez años para construir un modelo virtual del cerebro

1384534780966cerebro-fotogalc4

El mes pasado arrancó oficialmente el Human Brain Project (HBP), un megaproyecto financiado por la Comisión Europea con 1.200 millones de euros y en el que participarán durante diez años más de 130 instituciones de investigación en el mundo, 80 de ellas, europeas.

La finalidad del proyecto es “tratar de desvelar qué hace que el cerebro humano sea único, los mecanismos básicos que hay detrás del conocimiento y el comportamiento, y también qué pasa cuando falla”, señala el neurocientífico Henry Markram , coordinador del proyecto desde la Escuela Politécnica Federal de Lausana (EPFL), institución suiza que lidera la iniciativa.

Según Markram, el desarrollo del HBP traerá no solo un conocimiento más profundo del cerebro y de cómo tratar mejor las enfermedades cerebrales. También servirá como un acelerador tecnológico para mejorar los superordenadores y desarrollar sistemas totalmente nuevos inspirados en el funcionamiento y las capacidades del cerebro.

Markram participó recientemente en una conferencia organizada por IBM Research , en su filial de Zúrich (Suiza), a la que asistió SINC. La multinacional estadounidense está muy implicada en el proyecto, ya que desde 2005 colabora con la EPFL en el Blue Brain Project , un precursor del HBP nacido para crear un modelo funcional del cerebro mediante simulaciones en los supercomputadores Blue Gene de IBM.

La carrera del cerebro

Además, el Human Brain Project va a convivir con otro gran proyecto del estudio del cerebro llamado Brain Initiative , impulsado por Estados Unidos y liderado por el científico español Rafael Yuste, que pretende mapear todas y cada una de las neuronas. El presidente Obama está intentado persuadir al Congreso estadounidense para que otorgue a esta iniciativa una partida presupuestaria de 3.000 millones de dólares (2.220 millones de euros). Hasta ahora se han asignado 100 millones de dólares (unos 75 millones de euros).

La coincidencia en el tiempo de ambos proyectos ha hecho que se hable de la ‘carrera del cerebro’ y que se haya comparado a estas propuestas con el lanzamiento del Proyecto Genoma a comienzos de los noventa del siglo pasado.

Sin embargo, el Human Brain Project y la Brain Initiative tienen aproximaciones muy diferentes. “Nosotros vamos a ser muy pragmáticos en el HBP. Sabemos que es imposible mapear experimentalmente el cerebro. Algunos científicos están diciendo que se puede hacer como con el genoma humano, pero no es más que una ilusión”, subraya Markram.

Según un símil utilizado frecuentemente en neurociencia, el número total de células, incluyendo neuronas, células vasculares y glía en el cerebro humano es mayor que el número de estrellas en la Vía Láctea.

“Sabemos que es imposible mapear experimentalmente el cerebro, lo que haremos será predecirlo”

El neurocientífico dice que con métodos convencionales, “se necesitarían unos 20.000 experimentos para mapear un solo circuito neuronal y en el cerebro hay unos 90.000 millones de neuronas. Además, para comprender plenamente el funcionamiento de todas las sinapsis y de cómo interactúan con las neuronas en otras partes del neocórtex, tendrían que rastrear 100 billones de conexiones, algo experimentalmente imposible”, insiste.

Llevaría siglos hacerlo con la tecnología actual e incluso con futuros desarrollos. Entonces, añade, “si no podemos hacer un mapa experimental del cerebro, haremos un modelo predictivo. Vamos a predecir su biología, el número de neuronas, el tipo de neuronas, las conexiones, dónde están localizadas las proteínas… Tenemos que desarrollar una ciencia completamente nueva que se llamará neurociencia predictiva”.

Simulación y experimentación

Así pues, el gran reto del HBP será simular el funcionamiento del cerebro en sus diferentes capas, desde el genoma y niveles celulares a neuronas, circuitos, regiones y finalmente el cerebro entero, empezando con ratones y luego con humanos.

En vez de mapear las estructuras neurales pieza a pieza, intentarán desentrañar algunos de los principios subyacentes que gobiernan la morfología y la arquitectura del cerebro. Y utilizarán superordenadores para, con miles de simulaciones estadísticas, predecir la forma en que las neuronas tienden a combinarse.

Después se comprobarán los modelos con los datos experimentales y, en teoría, se podrán predecir esas estructuras y utilizarlas para realizar ingeniería inversa del cerebro humano.

“El cerebro tiene muchos secretos,  se puede dañar una parte importante y sigue funcionando”

Según el coordinador del HBP, hará falta mucho trabajo para preparar y construir todo el software, organizar los datos biológicos y desarrollar los algoritmos. Y para ello será necesaria una computación totalmente diferente a la que existe ahora.

El big data que tendrá que manejar el proyecto vendrá también de los 100.000 artículos científicos que se publican anualmente sobre el cerebro y de datos procedentes de hospitales con información de pacientes, cuya identidad permanecerá anónima, gracias a las modernas técnicas de encriptación. “Hay una información muy dispersa y fragmentada que este proyecto permitirá unificar e integrar, dice Markram.

Acelerador tecnológico

“Las primeras fases del HBP aún se podrán realizar con los sistemas de supercomputaciónactuales, pero a medida que avance, mayor será su complejidad. Estamos trabajando para desarrollar nuevos paradigmas que nos permitan afrontar el desafío, señala Alessandro Curioni, director de ciencia computacional en IBM Research-Zúrich.

La firma ha colaborado con EPFL, que ahora lidera el Human Brain Project, en el desarrollo desuperordenadores intensivos en memoria e interactivos, que hagan frente a la avalancha de datos que habrá que procesar y almacenar.

Además de IBM, otras compañías como Cray, Intel y Bull también están trabajando para conseguir superordenadores 1.000 veces más veloces que los actuales. Estas firmas se han comprometido a construir las primeras máquinas exaescala (qué operarán a trillones de operaciones por segundo) hacia el año 2020. Pero la verdadera revolución tecnológica vendrá, según Curioni, de la computación neuromórfica en la que IBM ya lleva trabajando varios años.

Para construir estos sistemas los científicos computacionales intentan aprender del cerebro, de su forma de procesar, transmitir y almacenar información y de cómo hace todo esto con un consumo de energía mínimo (20 vatios, el equivalente a lo que consume una bombilla).

“El cerebro tiene muchos secretos, no necesita programarse, aprende. Es robusto, se puededañar una parte importante y sigue funcionando. La tecnología tiene todavía mucho que aprender de él”, dice Markram.

Europa se da diez años para construir un modelo virtual del cerebro – Noticias.com.

Comentarios desactivados en Europa se da diez años para construir un modelo virtual del cerebro

Archivado bajo Centros Investigación, Cerebro