¿Cómo viajan las proteínas a través del Aparato de Golgi? |Scitable

El aparato de Golgi transporta y modifica las proteínas en las células eucariotas.¿Cómo han estudiado los científicos los movimientos dinámicos de proteínas a través del aparato de Golgi?

El aparato de Golgi es el orgánulo central de la mediación de la proteína y el transporte de lípidos dentro de la célula eucariota Normalmente, los libros de texto ilustran el aparato de Golgi como algo parecido a una pila de pan de pita. Sin embargo, esta representación no ilustra adecuadamente la naturaleza dinámica de los compartimentos del Golgi (llamados cisternae) o la variedad de morfologías con que el aparato de Golgi se manifiesta en diferentes tipos de células. Podemos aprender mucho simplemente preguntándonos por qué existen siquiera estas estructuras tan diversas. Los investigadores aún no entienden completamente cómo diversas morfologías del Golgi pueden afectar a su función. Sin embargo, los científicos están utilizando actualmente las sutiles variaciones de su morfolofgía entre los diferentes tipos de células para preguntarse cómo se mueven las proteínas a través del aparato de Golgi.

¿Qué sucede con las proteínas mientras se mueven por el aparato de Golgi?

El aparato de Golgi procesa las proteínas realizadas por el retículo endoplasmático (ER) antes de enviarlas a la célula. Las proteínas entran en el aparato de Golgi en el lado orientado hacia el ER (lado cis), y salen en el lado opuesto de la pila, frente a la membrana plasmática de la célula (lado trans). Las proteínas deben hacer su camino a través de la pila de cisternas que intervienen y en el camino serán modificadas y acondicionadas para su transporte a diferentes lugares dentro de la célula (Figura 1). Las cisternas del Aparato de  Golgi varían en número, forma y organización en diferentes tipos de células. La representación esquemática típica de tres grandes cisternas (cis, medial y trans) es en realidad una simplificación. A veces, regiones adicionales se añaden a cada lado, y se llaman la red cis del Golgi cis (CGN, cis Golgi net) y la red trans del Golgi (TGN, trans Golgi net). Estas redes tienen una estructura más variable, incluyendo algunas regiones like-cisternas y en algunas ocasiones regiones vesiculadas.

Figura 1: El aparato de Golgi modifica y ordena las proteínas para el transporte a lo largo de la célula. El aparato de Golgi se encuentra a menudo en estrecha proximidad a la sala de emergencias en las células. Proteína de carga se mueve desde el RE al aparato de Golgi, se modifica en el aparato de Golgi, y se envían a continuación a varios destinos en la célula, incluyendo los lisosomas y la superficie de la célula.

Cada cisterna o de la región del aparato de Golgi contiene diferentes enzimas de modificación de proteínas. ¿Qué hacen estas enzimas? Las enzimas del Golgi catalizan la adición o eliminación de los azúcares de las proteínas de carga (glicosilación), la adición de grupos sulfato (sulfatación), y la adición de grupos fosfato ( fosforilación). Las Proteínas de carga son modificadas por enzimas (llamadas enzimas residentes) ubicadas dentro de cada cisterna. Las enzimas añaden secuencialmente las modificaciones pertinentes a las proteínas de carga. Algunas modificaciones mediadas por el Golgi actúan como señales para dirigir las proteínas a sus destinos finales dentro de las células, incluyendo los lisosomas y la membrana plasmática. ¿Qué sucede cuando hay defectos en la función del Golgi? Los defectos en varios aspectos de la función de Golgi pueden dar como resultado trastornos congénitos de glicosilación, algunas formas de distrofia muscular, y pueden contribuir a la diabetes, cáncer y la fibrosis quística (Ungar 2009).

¿Cómo se mueven las proteínas de carga entre las cisternas del Golgi?

Los científicos han propuesto dos explicaciones posibles: el modelo de transporte vesicular y el modelo de maduración cisternal. Curiosamente, ambos modelos explican las condiciones de estado estacionario del aparato de Golgi y los procesos, sin embargo lo hacen muy diferente (Figura 2). En 2002 James Rothman y Randy Schekman ganaron el Premio Lasker por su trabajo pionero que detalla los sistemas de vesícula y membrana que hacen que la secreción sea posible en las células eucariotas. Estos dos científicos trabajaron de forma independiente utilizando diferentes organismos modelo y diferentes enfoques biológicos (Strauss 2009). Juntos lograron un fuerte evidencia de que hay moléculas y procesos comunes que participan en la fusión de membranas y la fisión en eucariotas. Rothman y sus colegas reconstituyeron bioquímicamente las membranas de Golgi de mamíferos, aislaron vesículas capaces de pasar de una cisterna a otra. Como un enfoque diferente, Schekman y sus colegas utilizaron la genética de levaduras para identificar y caracterizar muchas de las proteínas importantes que participan en la secreción de este eucariota unicelular. Con el tiempo Rothman y el trabajo de Schekman convergieron en varias moléculas importantes que participaron en la formación y fusión de vesículas, lo que condujo a lo que se dio en llamar el modelo de transporte vesicular.

Figura 2: Dos modelos de tráfico de proteínas a través del Golgi
(A) El modelo de la maduración cisternal de movimiento de la proteína a través del aparato de Golgi. Como una nueva cisterna cis se forma atraviesa la pila de Golgi, cambiando a medida que madura al acumular, entonces enzimas trans medial a través de vesículas que se mueven de adelante a principios de cisternas (tráfico retrógrado). (B) El modelo de transporte vesicular, donde cada cisterna permanece en un solo lugar con enzimas que no cambian, y las proteínas se mueven hacia adelante a través de la pila a través de vesículas que se mueven desde temprano para luego cisternas (tráfico anterógrada).

Modelo de Transporte vesicular: Evidencias

Una de las principales observaciones del grupo de Rothman fue que las vesículas que se formaron en el aparato de Golgi trasladaron proteínas de carga entre las cisternas de la cara cis a la cara trans. Estas observaciones apoyan el modelo de transporte vesicular originalmente desarrollado y defendido por George Palade y Marilyn Farquhar (Farquhar y Palade, 1998.) El modelo de transporte vesicular postula que las cisternas de Golgi son compartimentos estables que albergan ciertas enzimas de modificación de proteínas que funcionan para añadir o eliminar los azúcares, añadir grupos sulfato, y realizar otras modificaciones. Las vesículas llegan a cada cisterna que llevando proteínas de carga, que luego son modificadas por las enzimas residentes ubicados dentro de esa cisterna. A continuación, nuevas vesículas que llevan proteínasde carga brotan de la cisterna y viajan a la siguiente cisterna estable, donde la siguiente serie de enzimas adicionales procesa las proteínas de carga (Rothman y Wieland, 1996).

El Modelo de maduración cisternal

Antes de los trabajos de Palade, Farquhar, Rothman y otros, que analizaron las proteínas de vesículas en movimiento entre cisternas de Golgi, los científicos pensaban que cada cisterna del Golgi era transitoria y que las cisternas se trasladaban desde la cara cis a la trans del Golgi, cambiando con el tiempo. El movimiento de las proteínas como pasajeros en cisternas a través de la pila de Golgi se denomina el modelo de maduración cisternal. Este modelo propone que las enzimas presentes en cada cisterna individual cambian a medida que pasa el tiempo, mientras que las proteínas de carga permanecen en el interior de la cisterna. Antes del trabajo de Rothman en vesículas, este modelo tuvo un amplio apoyo. Sin embargo, una vez que los científicos identificaron un gran número de pequeñas vesículas de transporte que rodean el aparato de Golgi, los investigadores desarrollaron el modelo de transporte vesicular como una actualización de ésta. Sin embargo, como suele ocurrir en la ciencia (y la moda), las viejas ideas a veces regresan de nuevas maneras.
 

¿Qué nueva evidencia apoya el modelo de maduración cisternal?

En la década de 1990 los científicos estudiaron varios tipos de células para ampliar nuestra comprensión del Golgi. Alberto Luini y sus colegas utilizaron células de mamífero en cultivo para investigar cómo los grandes complejos de proteínas se movieron a través del aparato de Golgi. Los investigadores utilizaron inmunomicroscopía seguir el camino que seguían rígidos trímeros de procolágeno, en forma de barra de unos 300 nm, a través del Golgi en fibroblastos de mamífero. Luini y sus colegas observaron procolágeno sólo dentro de cisternas del Golgi, y nunca dentro de las vesículas, que son normalmente mucho más pequeñas (<100 nm de diámetro) que el procolágeno (Bonfantiet al . 1998). Otros investigadores, como Michael Melkonian y sus colegas, observaron resultados similares en el estudio del aparato de Golgi de las algas. Varios tipos de protistas flagelados construyen y exportan escamas que se adhieren a la superficie celular de estos organismos. Las escamas tienen diversos tmaños y formas pero muy definidos. Los investigadores observaron que en diferentes especies de algas que exportan las muy grandes (1,5-2 mm) y las de tamaño moderado (~ 40 nm), las escamas se encontraron consistentemente dentro de las cisternas, pero no en el transporte de vesículas (Becker, y Bolinger Melkonian 1995; Becker & Melkonian 1996). Los resultados de estos diversos tipos de células confirman el modelo de maduración cisternal de transporte de proteínas a través del aparato de Golgi.

¿Cuáles fueron las vesículas que Rothman descubrió en el aparato de Golgi? El modelo de maduración cisternal actual propone que estas vesículas son vehículos de transporte para las enzimas del Golgi y no para las  proteínas de carga. Las vesículas retrógradas que viajan hacia atrás en el aparato de Golgi brotan de una cisterna para transferir enzimas a las cisternas más jóvenes. Mientras tanto, otros vesículas, procedentes de cisternas mayores, llevan las enzimas necesarias para los próximos pasos en la modificación de proteínas (Glick y Malhotra 1998; Pellham 1998).

¿Qué modelo es más preciso?

Hoy en día la mayoría de los investigadores coinciden en que la evidencia favorece el modelo de maduración cisternal del Golgi (EMR et al. 2009). La evidencia en apoyo de este modelo proviene de los laboratorios de Benjamin Glick y Akihiko Nakano, que al mismo tiempo lleva a cabo experimentos que demostraron sorprendentemente el proceso de maduración cisternal. En un ensayo visual impresionante, ambos laboratorios utilizaron la microscopía de fluorescencia de células vivas para observar directamente la maduración cisternal del Golgi en Saccharomyces cerevisiae (levadura de panadero) (Figura 3) (Losev y col2006;. Matsuura-Tokita y col 2006;. revisado en Malhotra y Alcalde 2006). El aparato de Golgi de S. cerevisiae tiene una estructura llamativa, o más bien, una llamativa falta de estructura. En lugar de aparecer como la pila típica de pan de pita, en S. cerevisiae el Golgi es menos organizado. Las cisternas individuales se extienden de una manera irregular por toda la célula. Esta estructura inusual era ideal para el uso de microscopía de luz para observar los cambios en las cisternas individuales con el tiempo. El modelo de transporte vesicular podría predecir que una cisterna cis individual permanecería cis, con enzimas cis característicos, en toda su vida útil. Sin embargo, el modelo de maduración cisternal podría predecir que una cisterna cis recién formada eventualmente maduraría como cisterna medial, y a continuación, una cisterna trans, antes de romperse cuando su contenido se envasara para su destino final en la célula.

En sus experimentos, los dos grupos de investigación vincularon proteínas fluorescentes (verde brillante o rojo) a las proteínas presentes en diferentes cisternas individuales de S. cerevisiae , y siguieron a estas moléculas de color todo el tiempo. Los investigadores diseñaron los experimentos para poner a prueba las predicciones de los modelos de maduración cisternal y transporte vesicular. Si el modelo de transporte vesicular era correcto, entonces las cisternas serían estable y mantendrían las mismas proteínas residentes de Golgi marcadas con fluorescencia todo el tiempo. Por el contrario, si el modelo de maduración cisternal no era correcto, entonces cada cisterna contendría un conjunto cambiante de proteínas del Golgi con el tiempo. En sus experimentos, los investigadores crearon hermosas películas de la levadura y observaron que las cisternas individuales cambiaban de color con el tiempo. Después de analizar una variedad de proteínas de Golgi, los investigadores observaron consistentemente los cambios en la composición proteica de cisternas individuales con el tiempo. Sus resultados proporcionan una fuerte evidencia para el modelo de maduración cisternal.

 

Aparato de Golgi, las proteínas, Transporte | Aprende Ciencia en Scitable.

1 comentario

Archivado bajo Aparato de Golgi, Biología, Biología Celular, Bioquímica, Célula, Proteínas

Una respuesta a “¿Cómo viajan las proteínas a través del Aparato de Golgi? |Scitable

  1. antoniopoot

    Reblogueó esto en blog todo educacion.